NP-Hard - определение. Что такое NP-Hard
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое NP-Hard - определение


NP-hardness         
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete)
COMPLEXITY CLASS
NP hard; Np hard; Np-hard; NP-Hard Problem; NP-HARD; NP-hard problems; NP-Hard; NP-hard
In computational complexity theory, NP-hardness (non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem.
NP-hard         
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete)
COMPLEXITY CLASS
NP hard; Np hard; Np-hard; NP-Hard Problem; NP-HARD; NP-hard problems; NP-Hard; NP-hard
<complexity> A set or property of computational {search problems}. A problem is NP-hard if solving it in {polynomial time} would make it possible to solve all problems in class NP in polynomial time. Some NP-hard problems are also in NP (these are called "NP-complete"), some are not. If you could reduce an NP problem to an NP-hard problem and then solve it in polynomial time, you could solve all NP problems. See also computational complexity. [Examples?] (1995-04-10)
Weak NP-completeness         
SET OF COMPUTATIONAL PROBLEMS FOR WHICH THERE IS AN ALGORITHM SOLVING THEM IN POLYNOMIAL TIME IN THE DIMENSION OF THE PROBLEM AND THE MAGNITUDES OF THE DATA INVOLVED (IF GIVEN AS INTEGERS), RATHER THAN THE BASE-TWO LOGARITHMS OF THEIR MAGNITUDES
Weakly NP-complete; Weakly NP-hard
In computational complexity, an NP-complete (or NP-hard) problem is weakly NP-complete (or weakly NP-hard) if there is an algorithm for the problem whose running time is polynomial in the dimension of the problem and the magnitudes of the data involved (provided these are given as integers), rather than the base-two logarithms of their magnitudes. Such algorithms are technically exponential functions of their input size and are therefore not considered polynomial.